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Abstract.To this date, the most successful app roaches to learning have
been cither the back-propagation or gradient descent method. Although very
powcrful on relatively simple p roblems, theoretical analysis and siniulations
show that these approaches break down as s00 nas sufliciently complex prob

lews are considered. To overcome this fundamental limitation, we suggest
a hicrarchical and modular approach, dircctly inspired from biological net -
works, wherehy a certain degree of structu e is introduced in the learning,
systern. This approach is apphied to a shinple example of trajectory learning
of a salii-figure cight. The ideas involved, however, extend immediately to
morc general computational problenys,

1. Introduction
Learning is a fundamental ability of biological systems. Understanding its prin-
ciples IS also key to the destgn of intelligent circuits and computers. To this
date, themost successful approach to learning, from an engineering standpoint,
has been the back-propagation approach[7] or gradient descent approach. In this
frarnework, i the course of learning from examples, the paramneters of a learning
systemn, suchas ancural network, are adjusted incrementally SO as to oplinize
by gradient descent a suit able function mncasuring the perforinance of the sys
tem at any given time. Although very powerful on relatively simple problemns,
theorctical analysis and sinulations [3 4] show that this approach breaks down as
soon as sufliciently coruplex problains are considered. Gradient descernit learning
applied to an amorphous learning system is bound to fail.  To overcomne this
fundamental hinitation, we are suggesting a hicrarchical and modular approach
whereby a certain degree of structure is introduced in the learning systern,
Consider the problem of synthesizing a ncural network capable of producing
a certain given non-trivial trajectory. To fix the ideas, we can imagine that the
model neurons inthe network satisfy the usual additive model cquationsfh)
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Phe learning task is to find the right paramcter values, such as the synaptic
weightswij, the charging timne con stan ts 7i and thie amplifiers gains, so that the

output units of the network follow a certain preseribed trajectory w*(1) over a
given time interval [lo, 11]- For iustance, a typical benclunark trajectory inthe
literature is a circle or afigure eight. Networks such as (1) have been successfully
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trained on figure eights using a form of gradient descent learming for recurrent
networks[6,8]. Consider now the problemn of learning a more complicated tra-
jectory, such as a double figure cight. Although the task appears only slightly
more complicated, siimulations show that afully interconnceted set of units will
not be able to learn this task by indiseriminate gradient descent learning 011 all
of its paramcters. Thus a different approach is needed.

2. Modular Hicrarchical A pproach

Biology secins to have overcome the obstacles inherent to gradient descent learn-
ing through cvolution. Learning, in biological organisimns is never started from a
tabula rasa. Rather, a high degrec of structure is already present in the neural
circuitry of newly bornorganisins. This strut.trjrc is genetically encoded and the
result of evolutionary tinkering over time scales several times larger than those
of continental drift. Little is known of the interaction between the prewired
st ructure and the actual learning.  One reasonable hypothesis s that complex
tasks are broken up into simpler modules and that learning, perhaps in differ-
ent foris, can operate both within and across modules. The modules in turn
can be organized in a hierarchical way, all the way up to the level of nucleior
braiu areas. The diflicult problem then becomes hiow to find a suit able module
decomposition and whether there are any principles for doing so. One trick used
by evolution sceins to have been the duplication, by error, of amodule together
with the subsequent evolution of one of the copies into a new module so nichow
complementary of the first one. But this is far from yielding any uscful princi-
ple and mnay, at best, be used in genctic type of algorithing, where evolutionary
tinkering is]l]illJic.kedl inthe computer.

We have taken inspiration from these ideas, to tackle the problem of learning
specific conplex trajectorics in a neural network. Althoughit is difficult at, this
st age to keep @ close analogy with biology, it may bLe useful to thiuk of the
problem of central pattern gencration or motor control in natural organisins. In
order to construct a neural uetwork capable of producing a double figure eight,
we arc £0ing to introduce a cert ain deg ree of organization in the systen prior
to auny learning. The basic organization of the systein consists of a hierarchy of
modules. In this particular exarnple, cach module can be viewed essentially as
an oscillator. The modules, in turn, are organized in a hierarchical way. For the
time being, all the inodules within one level of the hicrarchy control the output
of the miodules located in the previous layer.

At the bottom of the hicrarchy, in the first level, one finds a family of siimple
and possibly independent modules, cach one corresponding to a circuit with a
simall nunber of units capable of producing soine eler nentary trajectory, such
as a sinusoidal oscillation. In the casc of the additive model, these could be
simple oscillator rings with two or three neurons, an odd numnber of inhibitory
connections and sufliciently high gains[1,2]. ‘T'hus, inour exarnple, the first level
of the hicrarchy could containfour oscillator rings, one for eachloop of the target
trajeclory. The paramcters in each one of these four modules can be adjusted,
e.g., by gradient descent, in order to match cach one of the loops in the target
trajectory.

The sccond level of the pyramid should contain two control odules. Fach
one Of these nmiodules controls a distinet pair of oseillator net works from the
first level, so that each control network v the second level ends up producing
a simple figure cight (see ¥ig. 1). Again, the control networks in level two can




be oscillator rings and their parameters can be adjusted. i particular, after
the learning process is completed, they should be operating in their high-gain
regimes and have a period equalto the sum of the periods of the circuits each
one controls.

Finally, the third layer, consist of another oscillatory and adjustable module
which controls the two modu les in the sccond level so as to produce a double
figure eight. The third layer module must also endup operating in its high-gain
regime. In general, the final output trajectory is also a limit cycle becauseit is
obtained by superimposition of limit cycles in the various modules. If the various
oscillators relax to their limit cycles independently of one another, it is essential
to provide for adjustable delays between the various modules in order to get the
proper harmony among, the various phases. Inthis way, a sparse network with
20 units or so can be constructed which can successfully execute adouble figure
cight.

It is clear that this approach which combines a modular hierarchical archi-
tecture together with somne simple form of learning can be extended to general
trajectories. Atthe very least, one could always usc Fourier analysis to de-
compose a target trajectory into a superimposition of sinusoidal oscillations of
different frequencies and use, inthe first level of the hierarchy, a corresponding
large bauk of oscillators networks. One could aso use damnped oscillators to per-
fcn-in somne sort of wavelet decomposition. Although we believe that oscillators
with Jiinit cycles present several attractive properties (stability, short transients,
biological relevance...), one can conceivably use comnpletely different circuits as
building blocks in cach module.
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Fig. 1: Symbolic representation of a inodular and hierarchical network
for double figurc eight.

The modular hierarchical approach leads to architectures which arc more
structured than fully interconnected networks, with a general fecdforward flow of
information and sparse recurrent connections to achieve dynamical effects. The
sparsity of units and connections arc attractive features for hardwarc design;




and so is dso themnodular organization and the fact that lcarning is much more
circumnseribed thanin fully intercomnected systeins. However, fundamental open
problems remainin the overall organization of lecarning across modules and in
the origin of the decomnposition. In particular, can the modular architecture be
the outcomne of a shmple internal organizational process rather than an external
imposition and how should learning be coordinated in tiine and across mod ules
(other than the obvious: modulesin the first level learn first, modulesin the
sccondlevel second,...)? Nlow successful is a global gradient descent strategy
applicd across modules? How can the same modular architecture be used for
different trajectorics, with short switching times between trajectories and proper
phascs along each trajectory?

3. Exainple of Numerical Siimulations
"T'he new learning paradigin, presented in the preceding section, has been applied
to the problem of learning a figure eight trajectory. Results referring to this
problemn can be found in the literature[G,8).

Inthis work we assumed that the desired trajectory of a semi-figure eight
is composed of two circles aud given by:

Dy= Cy 230 -1 cos(t)] -1 (1 - C1)yio - cos(1)) (2q)

Dy = Cy [0 4 sin(®)] -1 (1 - C))yao -1 sin(1)) (2b)

inwhich Cyis a square wave with a period of 4z, given by the followin g cquation;
C) = sign[sin(t/2)] (3)

and 210, 220, Y10, Y20 are the coordinates of the center of theleft andright circles
respectively. Plotting 17 vs. Dy will producethe desired sc~ni-figure cight, as
shown in fig. 3.

The basic module of the hierarchical approach for this trajectory is a simple
oscillatory ring network with four neurons. The activation dynainics of cach unit
in the module is given by:
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where Vo = Vyand Vi is the output of neuron ¢ given by;
Viz tanh(y; w) (5)

An odcl mmunber of inhibitory connections isrequired for stable oscillations (Atiya
and Baldi 1989). At this stage for simplicity, wc assume that wi=w fori =

1,3,4, w2 = - wand7i = 7,7z foriz=1, . ,4. Themodule is trained
to producc a circle through a sinusoidal waive thh period of 2x. Following the
analysis in Atiya and Baldi 1989, the initial value of the network paramcters, i.e.,

w, 7 and v are sct to onc a the beginning of the learning procedure. To upddtc
t.hc network paramecters, a gradient descent algorithm bared uwpon the forward
propagation of the error is used[9]. After the training, the network paramecters




converge to the following values, w . 1,025, ? = 0.972 and 7 -1.526. With
these values, after a bricl transition period, the module converges to a limit
cycle where cachiunit has a quasi-sinusoidal activation. The phase shift between
two consccutive neurons is about n/4. Therefore, plotting the activity of neuron
1 and 3 inthemnodule against cach other will produce a circle which is close to
the desire one as illustrated in Vig, 2.

At the sccond level of the hicrarchy is the control module. 1 his module
is also chosen to be asimple oscillatory ring network with four neurons. This
network is operating in the high gain regime and its period is twice that of the
basic modules, i.c., 47. The network parameters at the beginnin g of the learning
arc'set to w=0.9,7= 10, and 7 - 2.58.
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Iig. 2: Desired circle (solid line) and the one produced by the basic
module in the first layer (dashed line).
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Fig. 3: Desired semi-figure cight (solid line) and the one produced by
the network (dashed line).



The overall network has two output at any thine, 7y and Z,. Their value is
given by:

Z1205{ 41 VCM)] [210 4 VNIM] -1 [1 - VCM)][mo -1 VNI(3)]} (6a)
Zy: 0.5{[1 AVCM)[220 1 VN2 -1 [1 - VO] [yzo -1 VN2(3)]} (68)

inwhich VN1 (i) and VN2(i) arc the output of i** neuron in the first and second
modules in the first level of the hicrarchy, respectively, where VC(1) is the output

of the first neuron inthe controlmodule. Figure 4 shows the senlli-figure eight
oblained be plotting 71 vs. Zy.

4. Conclusion

I conclusion, a new hierarchical approach for supervised neural learning of time
dependent trgjcc.tories is presented. The modular hierarchical inethodology leads
to architectures which arc more structured than fully interconnected networks,
with a general feedforward flow of information and sparse recurrent connections
to achicve dynamical effects. The sparsity of the conmections as well as the
modular organization makes the hardware impleinentation of the methodology
very easy and attractive. This approach has been applied to an example of
trajectory learning of a semni-figure eight.
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